lecturer: Jakab Buda (ELTE TáTK & TK MILAB)
date (8*90 min):
- 18/02/2022 - 2 p.m
- 25/02/2022 - 2 p.m
- 04/03/2022 - 2 p.m
- 18/03/2022 - 2 p.m
- 25/03/2022 - 2 p.m
- 01/04/2022 - 2 p.m
- 08/04/2022 - 2 p.m
- 22/04/2022 - 2 p.m
location: ONLINE
ZOOM: We will send the Zoom link in e-mail.
language: English
max. 20 person
1.Introduction
- usage
- different methods
- steps of ML projects
- cost function
- parameters, hyperparameters
- performance metrics
2. Data and project ideas
3. Data preparation
4. regular ML methods I - regression
5. regular ML methods I - classification
- logistic / multinomial regression; SVM; Decision tree
6. ensemble methods
- Stacking
- Random Forest
- XGBoost
7. Neural nets I – structure
8. Neural nets II – tuning